ar X iv : h ep - t h / 96 01 00 6 v 1 3 J an 1 99 6 1 - LOOP EFFECTIVE ACTION ON THE 4 - BALL

نویسنده

  • Giuseppe Pollifrone
چکیده

This paper applies ζ-function regularization to evaluate the 1-loop effective action for scalar field theories and Euclidean Maxwell theory in the presence of boundaries. After a comparison of two techniques developed in the recent literature, vacuum Maxwell theory is studied and the contribution of all perturbative modes to ζ (0) is derived: transverse, longitudinal and normal modes of the electromagnetic potential, jointly with ghost modes. The analysis is performed on imposing magnetic boundary conditions, when the Faddeev-Popov Euclidean action contains the particular gauge-averaging term which leads to a complete decoupling of all perturbative modes. It is shown that there is no cancellation of the contributions to ζ (0) resulting from longitudinal, normal and ghost modes. PACS numbers: 0370, 0460

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 01 05 31 8 v 1 3 1 M ay 2 00 1 Trace anomaly for 4 D higher derivative scalar - dilaton theory

Trace anomaly for conformally invariant higher derivative 4D scalar-dilaton theory is obtained by means of calculating divergent part of one-loop effective action for such system. Its applications are briefly mentioned.

متن کامل

ar X iv : h ep - t h / 96 10 24 7 v 1 3 1 O ct 1 99 6 On the Nonrelativistic Limit of the φ 4 Theory in 2 + 1 Dimensions ∗

We study the nonrelativistic limit of the quantum theory of a real scalar field with quartic self-interaction. The two body scattering amplitude is written in such way as to separate the contributions of high and low energy intermediary states. From this result and the two loop computation of the self energy correction, we determine an effective nonrelativistic action.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996